Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 32 - The Magnetic Field - Exercises and Problems - Page 960: 65

Answer

See the detailed answer below.

Work Step by Step

The particle (ion) undergoes two stages, accelerating in a straight line by the electric field and then moving in a semicircular path at constant speed by the magnetic field. In the second stage, the ion undergoes a cyclotron motion that has a radius that is given by $$r=\dfrac{mv}{qB}=\dfrac{mv}{eB}$$ So the speed of the ion is given by $$v=\dfrac{erB}{m} $$ where $r=D/2$ where $D$ is the diameter needed which is 8 cm, so $$v=\dfrac{eDB}{2m} \tag 1$$ In the first stage, Now we need to find the voltage needed to give the particle this speed so that we can use energy conservation. $$E_i=E_f$$ $$K_i+U_{ie}=K_f+U_{fe}$$ $$0+e\Delta V=\frac{1}{2}m v^2+0$$ Hence, $$\Delta V=\dfrac{m v^2}{2e} $$ Plug $v$ from (1), $$\Delta V=\dfrac{m }{2e}\left( \dfrac{eDB}{2m} \right)^2 $$ $$\Delta V= \dfrac{eD^2B^2}{8m} $$ where $m$ is the mass of the element which is given by $$m=M\times 1.6605\times 10^{-27}$$ where $M$ is the atomic mass of the element. Hence, $$\Delta V= \dfrac{eD^2B^2}{8M (1.6605\times 10^{-27})} $$ $$\color{blue}{\bf [a]}$$ For $\rm O_2^+$; $$\Delta V_{\rm O_2^+}= \dfrac{eD^2B^2}{8M_{\rm O_2^+} (1.6605\times 10^{-27})} $$ $$\Delta V_{\rm O_2^+}= \dfrac{eD^2B^2}{8(2M_{\rm O}) (1.6605\times 10^{-27})} $$ Plug the known; $$\Delta V_{\rm O_2^+}= \dfrac{(1.6022\times 10^{-19})(8.0000\times 10^{-2})^2(200.00\times 10^{-3})^2}{8(2\times 15.995) (1.6605\times 10^{-27})} $$ $$\Delta V_{\rm O_2^+}=\color{red}{\bf 96.519}\;\rm V$$ $$\color{blue}{\bf [b]}$$ For $\rm N_2^+$; $$\Delta V_{\rm N_2^+}= \dfrac{eD^2B^2}{8M_{\rm N_2^+} (1.6605\times 10^{-27})} $$ $$\Delta V_{\rm N_2^+}= \dfrac{eD^2B^2}{8(2M_{\rm N}) (1.6605\times 10^{-27})} $$ Plug the known; $$\Delta V_{\rm N_2^+}= \dfrac{(1.6022\times 10^{-19})(8.0000\times 10^{-2})^2(200.00\times 10^{-3})^2}{8(2\times 14.003) (1.6605\times 10^{-27})} $$ $$\Delta V_{\rm N_2^+}=\color{red}{\bf 110.25}\;\rm V$$ $$\color{blue}{\bf [c]}$$ For $\rm CO^+$; $$\Delta V_{\rm CO^+}= \dfrac{eD^2B^2}{8(M_{\rm C } +M_{\rm O } ) (1.6605\times 10^{-27})} $$ Plug the known; $$\Delta V_{\rm CO^+}= \dfrac{(1.6022\times 10^{-19})(8.0000\times 10^{-2})^2(200.00\times 10^{-3})^2}{8( 12.000+15.995) (1.6605\times 10^{-27})} $$ $$\Delta V_{\rm CO^+}=\color{red}{\bf 110.29}\;\rm V$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.