Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 27 - Gauss's Law - Exercises and Problems - Page 809: 56

Answer

See the detailed answer below.

Work Step by Step

$$\color{blue}{\bf [a]}$$ We are given that the colume charge density is $$\rho =\dfrac{r\rho_0}{R}$$ where $\rho_0$ and $R$ are constants. This means that this a linear function. $$\rho =\dfrac{\rho_0}{R}r\tag 1$$ Noting that this works when $r\leq R$, so when $r\gt R$, $\rho=0$ See the first figure below. $$\color{blue}{\bf [b]}$$ To solve this problem, we need to use the hint given by the author. $$dq=\rho dV$$ where $dV$ is the volume of a cylinderical shell of length $L$, radius $r$, and thickness $dr$. Hence, $dV=(2\pi r)L dr$. Hence, $$dq=2 \pi \rho rL dr$$ Plug $\rho $ from (1), $$dq= \dfrac{2 \pi \rho_0 L}{R} r^2 dr$$ Integrating; $$\int_0^Q dq=\int_0^R \dfrac{2 \pi \rho_0 L}{R} r^2 dr$$ $$Q=\dfrac{2 \pi \rho_0 L}{3R} r^3 \bigg|_0^R $$ $$Q=\dfrac{2 \pi \rho_0 L}{3R} (R^3-0) $$ $$Q=\frac{2}{3 } \pi \rho_0 LR^2 $$ where $Q=\lambda L$ $$\lambda \color{red}{\bf\not} L=\frac{2}{3 } \pi \rho_0 \color{red}{\bf\not} LR^2 $$ Hence, $$\boxed{\rho_0=\dfrac{3\lambda}{2\pi R^2} }$$ $$\color{blue}{\bf [c]}$$ when $r\lt R$, $$\oint \vec E\cdot d\vec A=\dfrac{Q_{in}}{\epsilon_0}$$ $$\int_{\rm top} \vec E\cdot d\vec A+\int_{\rm bottom} \vec E\cdot d\vec A+\int_{\rm sides} \vec E\cdot d\vec A=\dfrac{Q_{in}}{\epsilon_0}$$ $$ 0+0+E A_{\rm sides} =\dfrac{Q_{in}}{\epsilon_0}$$ $$ E =\dfrac{Q_{in}}{A_{\rm sides}\epsilon_0}$$ $$ E =\dfrac{Q_{in}}{2\pi r L\epsilon_0}\tag 2$$ Now we need to find $Q_{in}$, $$Q_{in}=\int_0^{Q_{in}} dq=\int_0^r \dfrac{2 \pi \rho_0 L}{R} r^2 dr$$ $$Q_{in} = \dfrac{2 \pi \rho_0 L}{3R} r^3 $$ Plug into (2), $$ E =\dfrac{1}{2\pi r L\epsilon_0}\dfrac{2 \pi \rho_0 L}{3R} r^3 $$ $$ E = \dfrac{ \rho_0 }{3\epsilon_0 R} r^2 $$ Plug $\rho$ from the boxed formula in part (b), $$ E = \dfrac{ 1 }{3 \epsilon_0R}\dfrac{3\lambda}{2\pi R^2} r^2 $$ Therefore, $$\boxed{ E = \dfrac{ \lambda r^2}{2\pi \epsilon_0R^3}\;\hat r} $$ $$\color{blue}{\bf [d]}$$ when $r=R$, $$E = \dfrac{ \lambda R^2}{2\pi \epsilon_0R^3} = \dfrac{ \lambda }{2\pi \epsilon_0R } $$ $$E = \dfrac{1}{4\pi \epsilon_0}\dfrac{ 2\lambda }{ R } $$ which is a reasonable result since this is the electric fiel of an infinite line of charge.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.