Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 777: 41

Answer

See the detailed answer below.

Work Step by Step

We know that the electric field due to a continuous charge distribution is given by $$E=\dfrac{1}{4\pi \epsilon_0}\int_0^r\dfrac{1}{r^2}dq$$ Let's assume that the linear charge density of this rod is $\lambda$ which is given by $$\lambda=\dfrac{Q}{L}=\dfrac{dq}{dy}$$ where $dL$ is the length of the small black part in the figure below and $dx$ is its length. Thus, $$dq=\dfrac{Qdy}{L}\tag 1$$ So the electric field due to this small segment, as seen in the figure below, is given by $$dE=\dfrac{1}{4\pi \epsilon_0} \bigg[\dfrac{dq}{ r^2}(\cos\theta\;\hat i-\sin\theta \hat j)\bigg] $$ where $\sin\theta=y/r$, and $\cos\theta=x/r$, $$dE=\dfrac{1}{4\pi \epsilon_0} \bigg[\dfrac{dq}{ r^3}(x\;\hat i-y\;\hat j)\bigg] $$ where $r=\sqrt{x^2+y^2}$ $$dE=\dfrac{1}{4\pi \epsilon_0} \bigg[\dfrac{dq}{ (x^2+y^2)^{3/2}}(x\;\hat i-y\;\hat j)\bigg] $$ $$dE=\dfrac{dq}{4\pi \epsilon_0} \bigg[\dfrac{ x}{ (x^2+y^2)^{3/2}}\;\hat i-\dfrac{ y}{ (x^2+y^2)^{3/2}}\;\hat j \bigg] $$ Plug $dq$ from (1), $$dE=\dfrac{(Q/L)dy}{(4\pi \epsilon_0 ) } \bigg[\dfrac{ x}{ (x^2+y^2)^{3/2}}\;\hat i-\dfrac{ y}{ (x^2+y^2)^{3/2}}\;\hat j \bigg] $$ $$dE=\dfrac{Q/L }{(4\pi \epsilon_0 ) } \bigg[\dfrac{ xdy}{ (x^2+y^2)^{3/2}}\;\hat i-\dfrac{ ydy}{ (x^2+y^2)^{3/2}}\;\hat j \bigg] $$ For the electric field from the rod, we need to take the integral for both sides, $$E=\dfrac{Q/L }{(4\pi \epsilon_0 ) } \bigg[\int_0^L\dfrac{ xdy}{ (x^2+y^2)^{3/2}}\;\hat i-\int_0^L\dfrac{ ydy}{ (x^2+y^2)^{3/2}}\;\hat j \bigg] $$ $$E=\dfrac{Q/L }{(4\pi \epsilon_0 ) } \bigg[ \dfrac{ xy}{ x^2\sqrt{x^2+y^2} } \;\hat i- \dfrac{ -1}{ \sqrt{x^2+y^2}}\;\hat j \bigg]_0^L $$ $$E=\dfrac{Q/L }{(4\pi \epsilon_0 ) } \bigg[ \left(\dfrac{ L}{ x \sqrt{x^2+L^2} } -0 \right)\;\hat i+ \left(\dfrac{ 1}{ \sqrt{x^2+L^2}}-\dfrac{ 1}{ \sqrt{x^2+0}}\right)\;\hat j \bigg] $$ $$E= \left(\dfrac{ Q}{(4\pi \epsilon_0 ) x \sqrt{x^2+L^2} } \right)\;\hat i+\\ \dfrac{Q }{(4\pi \epsilon_0 ) L} \left(\dfrac{ 1}{ \sqrt{x^2+L^2}}-\dfrac{ 1}{x}\right)\;\hat j $$ where $$ \bigg(\dfrac{ 1}{ \sqrt{x^2+L^2}}-\dfrac{ 1}{x}\bigg) = \dfrac{x-\sqrt{x^2+L^2}}{x\sqrt{x^2+L^2}} = \dfrac{1}{x}\left[ \dfrac{x}{\sqrt{x^2+L^2}}-1\right] $$ Thus, $$E= \boxed{\left(\dfrac{ Q}{(4\pi \epsilon_0 ) x \sqrt{x^2+L^2} } \right)\;\hat i}+\\ \boxed{ \dfrac{Q }{(4\pi \epsilon_0 ) xL} \left[ \dfrac{x}{\sqrt{x^2+L^2}}-1\right]\;\hat j }$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.