Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 26 - The Electric Field - Exercises and Problems - Page 775: 8

Answer

See the detailed answer below.

Work Step by Step

First, we need to draw these 3 dots and the electric field direction. We know that the electric field direction is away from a positive charge and is toward the negative charge, see the second figure below. We know that the electric field exrted on a point at distance $r$ from the center of a long charged rod is given by $$E=\dfrac{1}{4\pi \epsilon_0}\dfrac{|Q|}{r\sqrt{r^2+\left(\frac{L}{2}\right)^2}}$$ Thus, at point 1, the net electric field is given by $$E_1=E_{glass}+E_{plastic}$$ We chose upward to be our positive direction, $$E_1=-\dfrac{1}{4\pi \epsilon_0} \dfrac{|Q_{glass}|}{r_{glass}\sqrt{r_{glass}^2+ \left(\frac{L_{glass}}{2}\right)^2}}\;\hat j-\dfrac{1}{4\pi \epsilon_0}\dfrac{|Q_{plastic}|}{r_{plastic}\sqrt{r_{plastic}^2+\left(\frac{L_{plastic}}{2}\right)^2}}\;\hat j $$ Recall that $|Q_{glass}|=|Q_{plastic}|=Q$, and $L_{glass}=L_{plastic}=L$ $$E_1=-\dfrac{Q}{4\pi \epsilon_0} \left[ \dfrac{1}{r_{glass}\sqrt{r_{glass}^2+\left(\frac{L}{2}\right)^2}}\;+\dfrac{1}{r_{plastic}\sqrt{r_{plastic}^2+\left(\frac{L}{2}\right)^2}}\right]\hat j\tag 1$$ Noting that $r_{glass}=r_{glass\rightarrow P_1}=0.01$ m while $r_{plastic}=r_{plastic\rightarrow P_1}=0.03$ m, $$E_1=-\dfrac{(10\times 10^{-9})}{4\pi (8.85\times 10^{-12})} \left[ \dfrac{1}{(0.01)\sqrt{(0.01)^2+\left(\frac{0.1}{2}\right)^2}}+\dfrac{1}{(0.03)\sqrt{(0.03)^2+\left(\frac{0.1}{2}\right)^2}}\right]\hat j $$ $$E_1=(\color{red}{\bf -2.28\times 10^5}\;\hat j)\;\rm N/C$$ By the same approach, using (1), at point 2, the net electric field is given by $$E_2=-\dfrac{Q}{4\pi \epsilon_0} \left[ \dfrac{1}{r_{glass}\sqrt{r_{glass}^2+\left(\frac{L}{2}\right)^2}}\;+\dfrac{1}{r_{plastic}\sqrt{r_{plastic}^2+\left(\frac{L}{2}\right)^2}}\right]\hat j $$ Noting that $r_{glass}=r_{glass\rightarrow P_2}=0.02$ m while $r_{plastic}=r_{plastic\rightarrow P_2}=0.02$ m, $$E_2=-\dfrac{(10\times 10^{-9})}{4\pi (8.85\times 10^{-12})} \left[ \dfrac{1}{(0.02)\sqrt{(0.02)^2+\left(\frac{0.1}{2}\right)^2}}+\dfrac{1}{(0.02)\sqrt{(0.02)^2+\left(\frac{0.1}{2}\right)^2}}\right]\hat j $$ $$E_2=(\color{red}{\bf -1.67\times 10^5}\;\hat j)\;\rm N/C$$ By the same approach, using (1), at point 3, the net electric field is given by $$E_3=-\dfrac{Q}{4\pi \epsilon_0} \left[ \dfrac{1}{r_{glass}\sqrt{r_{glass}^2+\left(\frac{L}{2}\right)^2}}\;+\dfrac{1}{r_{plastic}\sqrt{r_{plastic}^2+\left(\frac{L}{2}\right)^2}}\right]\hat j $$ Noting that $r_{glass}=r_{glass\rightarrow P_3}=0.03$ m while $r_{plastic}=r_{plastic\rightarrow P_3}=0.01$ m, $$E_2=-\dfrac{(10\times 10^{-9})}{4\pi (8.85\times 10^{-12})} \left[ \dfrac{1}{(0.02)\sqrt{(0.02)^2+\left(\frac{0.1}{2}\right)^2}}+\dfrac{1}{(0.02)\sqrt{(0.02)^2+\left(\frac{0.1}{2}\right)^2}}\right]\hat j $$ $$E_3=(\color{red}{\bf -2.28\times 10^5}\;\hat j)\;\rm N/C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.