Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 24 - Optical Instruments - Exercises and Problems - Page 714: 33

Answer

$5\;\rm cm$

Work Step by Step

We know that the lens maker’s equation is $$\dfrac{1}{f}=(n-1)\left[ \dfrac{1}{R_1}-\dfrac{1}{R_2} \right]$$ And since the lens is symmetric, $R_1=R_2$ where $R_1=R$, and $R_2=-R$. Thus, $$\dfrac{1}{f}=(n-1)\left[ \dfrac{1}{R }+\dfrac{1}{R } \right]=\dfrac{2(n-1)}{R}$$ $$f=\dfrac{R}{2(n-1)}\tag 1$$ We also know that the magnification of a telescope is given by $$M=-\dfrac{f_{\rm obj}}{f_{\rm eye}}=20$$ Hence, in magnitudes, $$f_{\rm obj}=20f_{\rm eye}\tag 2$$ Now we need to find the radius of curvature of the eye lens. So we need to solve (1) for $R$, $$R_{\rm eye}=2f_{\rm eye}(n-1)$$ where, from (2), $f_{\rm eye}=f_{\rm obj}/20$ $$R_{\rm eye}=\dfrac{2f_{\rm obj}(n-1)}{20}\tag 3$$ Using (1) again to find $f_{\rm obj}$, $$f_{\rm obj}=\dfrac{R_{\rm obj}}{2(n-1)} $$ Plug into (3), $$R_{\rm eye}=\dfrac{R_{\rm obj}}{2(n-1)}\dfrac{2 (n-1)}{20} =\dfrac{R_{\rm obj}}{20}$$ $$R_{\rm eye} =\dfrac{100}{20}=\color{red}{\bf 5.0}\;\rm cm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.