Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 16 - A Macroscopic Description of Matter - Exercises and Problems - Page 468: 74

Answer

See the detailed answer below.

Work Step by Step

a) Since the piston is at rest, the net force exerted on it is zero. $$\sum F_x=F_{\rm gas}-F_{\rm spring}=Ma_x=M(0)=0$$ Thus, $$F_{\rm gas}=F_{\rm spring}$$ The force exerted by the spring is given by $kx=k\Delta L$, and the force exerted by the gas is given by $P_0A$. Thus, $$P_0A=k\Delta L$$ Hence, $$\boxed{\Delta L=\dfrac{P_0A}{k}}$$ ____________________________________________________________ b) The net force exerted on the position is given by $$\sum F_x=F_{\rm gas}-F_{\rm spring} $$ Thus, $$\sum F_x= P_1A-k(\Delta L+x)\tag 1 $$ Since the gas temperature is constant, the gas undergoes an isothermal process. Thus, $$P_1V_1=P_0V_0$$ Solving for $P_1$; $$P_1=\dfrac{P_0V_0}{V_1}$$ We know that $V_0=AL_0$, so that $V_1=A(L_0+x)$. $$P_1=\dfrac{P_0\color{red}{\bf\not} AL_0}{\color{red}{\bf\not} A(L_0+x)}$$ $$P_1=\dfrac{P_0L_0}{L_0+x}\tag 2$$ Plugging into (1); $$\sum F_x= \dfrac{P_0L_0 A}{L_0+x}-k(\Delta L+x) $$ Plugging $\Delta L$ from the boxed formula above in part (a); $$\sum F_x= \dfrac{P_0L_0 A}{L_0+x}-k\left(\dfrac{P_0A}{k}+x\right) $$ $$\sum F_x= \dfrac{P_0L_0 A}{L_0+x}- P_0A -kx $$ $$\sum F_x= \dfrac{P_0\color{red}{\bf\not} L_0 A}{\color{red}{\bf\not} L_0(1+\frac{x}{L_0})}- P_0A -kx $$ $$\sum F_x= P_0A \overbrace{\left(1+\frac{x}{L_0}\right)^{-1}}^{\approx\left[ 1-\frac{x}{L_0}\right]}- P_0A -kx $$ We used here the famous binomial approximation of $\color{blue}{(1+x)^1\approx 1+nx}$ when $x\lt\lt 1$, and in our case here $\frac{x}{L_0}\lt\lt 1$ since $x\lt \lt L_0$. $$\sum F_x= P_0A \left[ 1-\frac{x}{L_0}\right] - P_0A -kx $$ $$\sum F_x=( P_0A) -\frac{ P_0A x}{L_0} - (P_0A) -kx $$ $$\sum F_x= -\frac{ P_0A x}{L_0} -kx $$ $$\boxed{\sum F_x= -\left(\frac{ P_0A }{L_0} +k\right)x }$$ ____________________________________________________________ c) We know that the oscillation period in simple harmonic motion is given by $$\omega=2\pi f=\dfrac{2\pi }{T}$$ where $f=1/T$ Hence, $$T=\dfrac{2\pi}{\omega}=2\pi \sqrt{\dfrac{M}{k}}$$ Now in the previous boxed formula, we can see that the term between parentheses $\left(\frac{ P_0A }{L_0} +k\right)$ is constant. It is similar to the spring force formula of $-kx$. Thus, $$\boxed{T= 2\pi \sqrt{\dfrac{M}{\frac{ P_0A }{L_0} +k}}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.