Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (3rd Edition)

Published by Pearson
ISBN 10: 0321740904
ISBN 13: 978-0-32174-090-8

Chapter 16 - A Macroscopic Description of Matter - Exercises and Problems - Page 467: 72

Answer

$1.02\;\rm cm$

Work Step by Step

We know that the compressed distance of the spring is given by $$F_{sp}=kx$$ where $k$ is the spring constant and $x$ is the compressed distance from the spring's equilibrium point. Thus, $$x=\dfrac{F_{sp}}{k}\tag 1$$ Now we need to find the spring force which is equal in magnitude and opposite in direction to the force exerted on the spring by the piston. $$F_{piston}=|F_{sp}|=\Delta PA=(P_2-P_1)A$$ where $\Delta P$ is the change in the pressure of the gas, $P_1=P_a$, and $P_2$ is the final gas pressure. Plugging into (1); $$x=\dfrac{(P_2-P_1)A}{k}\tag 2$$ So, we have to find the pressure $P$ when the gas temperature is raised to 100$^\circ$C Assuming that the gas sealed inside the cylinder is an ideal gas, so $$\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}$$ Noting that $V_1=AL$ where $L$ is the length of the cylinder before the gas pushes the piston, while $V_2=A(L+x)$ where $x$ is the extra distance moved by the piston due to the air pressure which is at the same time is the compressed distance by the spring. $$\dfrac{P_1 \color{red}{\bf\not} AL}{T_1}=\dfrac{P_2\color{red}{\bf\not} A(L+x)}{T_2}$$ $$\dfrac{P_1 L}{T_1}=\dfrac{P_2 (L+x)}{T_2}$$ Solving for $P_2$; $$\dfrac{P_1 LT_2}{T_1(L+x)}= P_2 $$ Plugging into (2) and solving for $x$; $$x=\left[\dfrac{P_1 LT_2}{T_1(L+x)}-P_1\right]\dfrac{ A}{k} $$ $$x=\left[\dfrac{ LT_2}{T_1(L+x)}-1\right]\dfrac{ P_1 A}{k} $$ Noting that $P_1=P_a$ $$x=\left[\dfrac{ LT_2-T_1(L+x)}{T_1(L+x)} \right]\dfrac{ P_aA}{k} $$ $$x(L+x)=\left[ LT_2-T_1(L+x) \right]\dfrac{ P_aA}{T_1k} $$ $$x(L+x)=\left[ LT_2-T_1 L -T_1x \right]\dfrac{ P_aA}{T_1k} $$ $$x(L+x)=\left[ L(T_2-T_1 ) -T_1x \right]\dfrac{ P_aA}{T_1k} $$ $$x(L+x)= L(T_2-T_1 ) \dfrac{ P_aA}{T_1k} -\dfrac{ P_aA}{ k} x $$ $$xL+x^2+\dfrac{ P_aA}{ k} x = \dfrac{ P_aA L(T_2-T_1 )}{T_1k} $$ $$ x^2+\left[\dfrac{ P_aA}{ k} +L\right] x - \dfrac{ P_aA L(T_2-T_1 )}{T_1k} =0\tag 3$$ Now we need to find $L$, so $$P_1V_1=nRT_1$$ Hence, $$\overbrace{P_1}^{P_a} AL=nRT_1$$ $$L=\dfrac{nRT_1}{P_a A }$$ Plugging into (3); $$ x^2+\left[\dfrac{ P_aA}{ k} +\dfrac{nRT_1}{P_a A }\right] x - \dfrac{nR\color{red}{\bf\not} T_1}{\color{red}{\bf\not} P_a\color{red}{\bf\not} A } \dfrac{ \color{red}{\bf\not} P_a\color{red}{\bf\not} A (T_2-T_1 )}{\color{red}{\bf\not} T_1k} =0 $$ $$ x^2+\left[\dfrac{ P_a^2A^2+nRT_1 k}{ kP_a A} \right] x -\left[\dfrac{nR (T_2-T_1)}{ k} \right]=0 $$ Plugging the known; $$ x^2+\\ \left[\dfrac{ (1.013\times 10^5)^2(10\times 10^{-4})^2+(0.004)(8.31)(20+273)(1500)}{ (1500)(1.013\times 10^5)(10\times 10^{-4})} \right] x -\\ \left[\dfrac{(0.004)(8.31)(100-20)}{ (1500)} \right]=0 $$ Using any software calculator, so $$x=0.010196\;{\rm m},\;\;\;\;\;\;{\rm Or,}\;\;\;\;\;\; x=-0.173872\;\rm m$$ And since $x$ here is considered as length, it can't be negative. So we have to dismiss the negative root. Therefore, $$x=\color{red}{\bf1.02}\;\rm cm$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.