Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 33 - Electromagnetic Waves - Problems - Page 1003: 44b

Answer

$\theta_2 = 70.4^{\circ}$

Work Step by Step

Since the light is initially unpolarized, half the intensity will be transmitted through the first polarizing sheet. We can write an expression for $I_1$: $I_1 = \frac{1}{2}I_0$ We can write an expression for $I_2$: $I_2 = I_1~cos^2~\theta_2$ $I_2 = \frac{1}{2}I_0~cos^2~\theta_2$ We can write an expression for $I_3$: $I_3 = I_2~cos^2~(90^{\circ}-\theta_2)$ $I_3 = \frac{1}{2}I_0~cos^2~\theta_2~cos^2~(90^{\circ}-\theta_2)$ $I_3 = \frac{1}{2}I_0~cos^2~\theta_2~sin^2~\theta_2$ We can find $\theta_2$: $I_3 = \frac{1}{2}I_0~cos^2~\theta_2~sin^2~\theta_2$ $I_3 = I_0~(\frac{1}{8}~sin^2~2\theta_2) = 0.0500~I_0$ $sin^2~2\theta_2 = 0.400$ $sin~2\theta_2 = 0.63246$ $2\theta_2 = sin^{-1}~(0.63246)~~$ or $~~2\theta_2 = 180^{\circ}-sin^{-1}~(0.63246)$ $2\theta_2 = 39.2^{\circ}~~$ or $~~2\theta_2 = 140.8^{\circ}$ $\theta_2 = 19.6^{\circ}, 70.4^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.