Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 22 - Electric Fields - Problems - Page 654: 21

Answer

$E=\frac{3 Q}{4 \pi \varepsilon_0 z^4}$.

Work Step by Step

Use the binomial expansions $ \begin{aligned} & (z-d / 2)^{-3} \approx z^{-3}-3 z^{-4}(-d / 2) \\ & (z+d / 2)^{-3} \approx z^{-3}-3 z^{-4}(d / 2) \end{aligned} $$ we obtain $$ E=\frac{q d}{2 \pi \varepsilon_0(z-d / 2)^3}-\frac{q d}{2 \pi \varepsilon_0(z+d / 2)^3} \\\approx \frac{q d}{2 \pi \varepsilon_0}\left[\frac{1}{z^3}+\frac{3 d}{2 z^4}-\frac{1}{z^3}+\frac{3 d}{2 z^4}\right]\\=\frac{6 q d^2}{4 \pi \varepsilon_0 z^4} . $ Since the quadrupole moment is $Q=2 q d^2$, we have $E=\frac{3 Q}{4 \pi \varepsilon_0 z^4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.