Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 17 - Waves-II - Problems - Page 510: 64

Answer

$$\boxed{\frac{v_s}{v}=0.236}$$

Work Step by Step

The emitted frequency is $f$ When the sound source moves towards the stationary detector, the detected frequency becomes: $f^{'}_{app}=\frac{v}{v-v_s}f$ When the sound source moves directly away from the stationary detector, the detected frequency becomes: $f^{'}_{rec}=\frac{v}{v+v_s}f$ It is given that $\frac{f^{'}_{app}-f^{'}_{rec}}{f}=0.500$ or, $\frac{\frac{v}{v-v_s}f-\frac{v}{v+v_s}f}{f}=\frac{1}{2}$ or, $\frac{v}{v-v_s}-\frac{v}{v+v_s}=\frac{1}{2}$ or, $\frac{v(v+v_s-v+v_s)}{v^2-v^2_s}=\frac{1}{2}$ or, $\frac{2vv_s}{v^2-v^2_s}=\frac{1}{2}$ or, $\frac{\frac{v_s}{v}}{1-\frac{v^2_s}{v^2}}=\frac{1}{4}$ or, $1-\frac{v^2_s}{v^2}=4\frac{v_s}{v}$ or, $\frac{v^2_s}{v^2}+4\frac{v_s}{v}-1=0$ Let, $\frac{v_s}{v}=x$ Therefore, $x^2+4x-1=0\;........(1)$ Eq. $1$ is quadratic equation. The solutions are $x=\frac{-4\pm\sqrt {16+4}}{2}=-2\pm\sqrt {5}$ The speed can not be negative. Therefore, the feasible solution is $x= -2+\sqrt {5}$ or, $\frac{v_s}{v}=-2+\sqrt {5}$ or, $\boxed{\frac{v_s}{v}=0.236}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.