Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 11 - Rolling, Torque, and Angular Momentum - Problems - Page 324: 57b

Answer

$\frac{K}{K_0} = 0.92$

Work Step by Step

We can find the initial rotational inertia of the system: $I_0 = \frac{1}{2}mr^2+\frac{1}{2}(10~m)(3.0~r)^2$ $I_0 = \frac{1}{2}mr^2+\frac{1}{2}~(90~m~r^2)$ $I_0 = \frac{91~m~r^2}{2}$ We can find the final rotational inertia of the system: $I_f = \frac{1}{2}mr^2+m(2r)^2+\frac{1}{2}(10~m)(3.0~r)^2$ $I_f = \frac{9}{2}mr^2+\frac{1}{2}~(90~m~r^2)$ $I_f = \frac{99~m~r^2}{2}$ We can use conservation of angular momentum to find the final angular velocity: $I_f~\omega_f = I_0~\omega_0$ $\omega_f = \frac{I_0~\omega_0}{I_f}$ $\omega_f = \frac{\frac{91~m~r^2}{2}~\omega_0}{\frac{99~m~r^2}{2}}$ $\omega_f = \frac{91~\omega_0}{99}$ $\omega_f = \frac{(91)~(20~rad/s)}{99}$ $\omega_f = 18.38~rad/s$ We can find the ratio $\frac{K}{K_0}$: $\frac{K}{K_0} = \frac{\frac{1}{2}I_f~\omega_f^2}{\frac{1}{2}I_0~\omega_0^2}$ $\frac{K}{K_0} = \frac{I_f~\omega_f^2}{I_0~\omega_0^2}$ $\frac{K}{K_0} = \frac{(\frac{99~m~r^2}{2})~(18.38~rad/s)^2}{(\frac{91~m~r^2}{2})~(20~rad/s)^2}$ $\frac{K}{K_0} = \frac{(99)~(18.38~rad/s)^2}{(91)~(20~rad/s)^2}$ $\frac{K}{K_0} = 0.92$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.