Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 9 - Exercises and Problems - Page 170: 19

Answer

$47.8 \space J$

Work Step by Step

Please see the attached image first. Here we use the principle of conservation of momentum. The initial momentum of the system = Final momentum of the system $m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{1}$ Let's apply this equation in horizontal & vertical directions. $\rightarrow\space 995g\times18.6\space m/s=623g\times V+372g\times 31.3 \space m/s$ $\space \space \space \space\space \space \space \space\space \space \space\space \space 6863.4g\space m/s= 623gV $ $\space \space \space \space\space \space \space \space\space \space \space \space\space \space \space \space\space \space \space \space\space \space 11\space m/s=V$ $\uparrow\space \space \space 0=623g\space u+372g\times0=\gt u=0$ Therefore the speed of the particle = 11 m/s Total energy after burst $(E_{1})=\frac{1}{2}m_{1}V_{1}^{2}+\frac{1}{2}m_{2}V_{2}^{2}$ $E_{1}=\frac{1}{2}(372\times10^{-3}kg)(31.3\space m/s)^{2}+\frac{1}{2}(623\times10^{-3}kg)(11\space m/s)^{2}$ $E_{1}= (182.2+37.7)\space J=219.9\space J-(1)$ Total energy before burst $(E_{2})=\frac{1}{2}mV^{2}$ $E_{2}=\frac{1}{2}\times995\times10^{-3}kg\times(18.6\space m/s)^{2}$ $E_{2}= 172.1\space J-(2)$ $(1)-(2)=\gt$ Energy gain when the rocket burst $= 219.9\space J-172.1\space J=47.8\space J$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.