Answer
a) $5.2 \ m/s^2$
b) $532 \ N$
Work Step by Step
We first break the forces into x and y components:
$F_{nx} + F_{gx} = ma_x$
$F_{ny} + F_{gy} = ma_y$
We see that the x-component can be simplified as follows:
$F_{nx} + F_{gx} = ma_x$
$ mgsin\theta= ma_x$
$ gsin\theta= a_x$
Thus:
$a_x = (9.8)(sin32^{\circ}) = 5.2 \ m/s^2$
We use the y component to find the normal force:
$F_{ny} + F_{gy} = ma_y$
$F_n = mgcos\theta $
$F_n = 65(9.81)(cos32^{\circ})=532 \ N $