Essential University Physics: Volume 1 (4th Edition) Clone

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 16 - Section 16.3 - Heat Transfer - Example - Page 302: 16.4

Answer

195 dollars

Work Step by Step

We first must find the values of $H$ for both the wall and the roof. Doing this, we obtain: $H_{roof} = \frac{1}{12.65} (1506)(50) = 5953 \ Btu/h$ $H_{wall} = \frac{1}{31.65} (\frac{36\times28}{cos30^{\circ}})(50) = 1839 \ Btu/h$ Adding these, we get $7792 \ Btu/h$, which is the same as 56.1 gallons per year. Since each gallon costs 3.48 dollars, we find that it will cost $\fbox{195}$ dollars.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.