Essential University Physics: Volume 1 (4th Edition)

Published by Pearson
ISBN 10: 0-134-98855-8
ISBN 13: 978-0-13498-855-9

Chapter 12 - Exercises and Problems - Page 222: 24

Answer

$21^{\circ}$

Work Step by Step

Please see the attached image first. We'll get the minimum angle when static friction is greatest. At that time $F_{S}=\mu n_{1}$ Let's consider the static equilibrium of the board. $\uparrow \sum \vec F=0$ $n_{1}-m_{1}g-m_{2}g=0$ $n_{1}=(m_{1}+m_{2})g-(1)$ $\rightarrow \sum\vec F=0$ $F_{S}-n_{1}=0$ $\mu n_{1}=n_{2}-(2)$ $(1)=\gt (2)$ $\mu (m_{1}+m_{2})g=n_{2}-(3)$ $\sum \tau_{A}\curvearrowright=0$ $m_{1}g\frac{L}{3}cos\theta - m_{2}\frac{L}{2}cos\theta\space -n_{2}Lsin\theta=0$ $\frac{m_{1}gLcos\theta}{3}+\frac{m_{2}gLcos\theta}{2}-\mu(m_{1}+m_{2})gLsin\theta=0$ $\frac{m_{1}}{3}+\frac{m_{2}}{2}=\mu (m_{1}+m_{2})tan\theta$ Let's plug known values into equation. $\frac{224\space kg}{3}+\frac{77.3\space kg}{2}=0.982 (224+77.3)kg\space tan\theta$ $0.38=tan\theta=\gt \theta=21^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.