Answer
\[\underline{\text{16}\text{.00 g}}\]
Work Step by Step
Calculate the mass of nitrogen as follows:
\[\begin{align}
& \text{Ratio}=\frac{\text{Mass of nitrogen}}{\text{Mass of}{{\text{ }}^{\text{12}}}\text{C}} \\
& \frac{7}{6}=\frac{\text{Mass of nitrogen}}{\text{12}\text{.00 g/mol }}
\end{align}\]
Rearrange the above expression as follows:
\[\begin{align}
& \text{Mass of nitrogen}=\frac{7\times 12.00\text{ g/mol}}{6} \\
& =14.00\text{ g/mol}
\end{align}\]
Calculate the mass of oxygen in \[{{\text{N}}_{\text{2}}}\text{O}\] as follows:
\[\begin{align}
& \text{Ratio}=\frac{\text{2}\left( \text{Mass of nitrogen} \right)}{\text{Mass of oxygen}} \\
& \frac{7}{4}=\frac{2\left( 14.00\text{ g/mol} \right)}{\text{Mass of oxygen}}
\end{align}\]
Rearrange the above expression as follows:
\[\begin{align}
& \text{Mass of oxygen}=\frac{4\times 2\left( 14.00\text{ g/mol} \right)}{7} \\
& =16.00\text{ g/mol}
\end{align}\]
The mass of \[1\text{ mol}\] of oxygen atoms is \[\underline{\text{16}\text{.00 g}}\].