Chemistry: Molecular Approach (4th Edition)

Published by Pearson
ISBN 10: 0134112830
ISBN 13: 978-0-13411-283-1

Chapter 16 - Section 16.6 - Finding the [H3O+] and pH of Strong and Weak Acid Solutions - For Practice - Page 741: 16.8

Answer

The $K_a$ for that weak acid is: $1.8 \times 10^{-6}$

Work Step by Step

1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HA ]& [ A^- ]& [ H_3O^+ ]\\ Initial& 0.175 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.175 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each concentration is equal to its balance coefficient. $$K_a = \frac{[Products]}{[Reactants]} = \frac{[ A^- ][ H^+ ]}{[ HA ]}$$ $$K_a = \frac{(x)(x)}{[ HA ]_{initial} - x}$$ 3. Using the pH, find the $H_3O^+$ concentration: $$[H_3O^+] = 10^{-pH} = 10^{-3.25} = 5.6 \times 10^{-4} \space M$$ $[H_3O^+] = x = 5.6 \times 10^{-4} $ 4. Substitute the value of x and calculate the $K_a$: $$K_a = \frac{( 5.6 \times 10^{-4} )^2}{ 0.175 - 5.6 \times 10^{-4} }$$ $K_a = 1.8 \times 10^{-6} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.