## Chemistry: Molecular Approach (4th Edition)

Published by Pearson

# Chapter 16 - Exercises - Page 772: 72

#### Answer

The percent ionization of this solution is equal to 1.7%

#### Work Step by Step

1. Draw the ICE table for this equilibrium: $$\begin{vmatrix} Compound& [ HC_7H_5O_2 ]& [ C_7H_5{O_2}^- ]& [ H_3O^+ ]\\ Initial& 0.225 & 0 & 0 \\ Change& -x& +x& +x\\ Equilibrium& 0.225 -x& 0 +x& 0 +x\\ \end{vmatrix}$$ 2. Write the expression for $K_a$, and substitute the concentrations: - The exponent of each concentration is equal to its balance coefficient. $$K_a = \frac{[Products]}{[Reactants]} = \frac{[ C_7H_5{O_2}^- ][ H^+ ]}{[ HC_7H_5O_2 ]}$$ $$K_a = \frac{(x)(x)}{[ HC_7H_5O_2 ]_{initial} - x}$$ 3. Assuming $0.225 \gt\gt x:$ $$K_a = \frac{x^2}{[ HC_7H_5O_2 ]_{initial}}$$ $$x = \sqrt{K_a \times [ HC_7H_5O_2 ]_{initial}} = \sqrt{ 6.5 \times 10^{-5} \times 0.225 }$$ $x = 3.9 \times 10^{-3}$ 4. Test if the assumption was correct: $$\frac{ 3.9 \times 10^{-3} }{ 0.225 } \times 100\% = 1.7 \%$$ 5. The percent is less than 5%. Thus, it is correct to say that $x = 3.9 x 10^{-3}$

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.