Answer
C
Work Step by Step
Since Kb1 is much bigger than Kb2, we can simplify the problem by assuming that the dissociation of $N_2H_5^+$ and formation of $OH^-$ in the second reaction won't affect the first equilibrium.
1)
$K_{b1}=[N_2H_5^+][OH^-]/[N_2H_4]$
$8.5\times10^{-7}=x\dot{}x/(0.025-x)$
$x=1.45\times10^{-4}\ M$
2)
$K_{b2}=[N_2H_6^{2+}][OH^-]/[N_2H_5^+]$
$8.9\times10^{-16}=y(1.45\times10^{-4}+y)/(1.45\times10^{-4}-y)$
$y\approx8.9\times10^{-16}\ M$
$[OH^-]\approx1.45\times10^{-4}\ M$
$pH=14+log([OH^-])=10.16$