Chemistry: An Introduction to General, Organic, and Biological Chemistry (12th Edition)

Published by Prentice Hall
ISBN 10: 0321908449
ISBN 13: 978-0-32190-844-5

Chapter 9 - Section 9.6 - Properties of Solutions - Additional Questions and Problems - Page 316: 9.96a

Answer

There are 26.6 g of $K_2CO_3$ in 0.428 L of that solution.

Work Step by Step

1. Since the molarity of that solution is equal to $ 0.450 \space M \space K_2CO_3$: $1 \space L \space solution = 0.450 \space moles \space K_2CO_3$ $\frac{1 \space L \space solution}{ 0.450 \space moles \space K_2CO_3} $ and $\frac{ 0.450 \space moles \space K_2CO_3}{1 \space L \space solution}$ 2. Determine the molar mass of this compound (K_2CO_3), and setup the conversion factors: Molar mass : $K: 39.10g * 2= 78.20g $ $C: 12.01g $ $O: 16.00g * 3= 48.00g $ 78.20g + 12.01g + 48.00g = 138.21g $ \frac{1 \space mole \space (K_2CO_3)}{ 138.21 \space g \space (K_2CO_3)}$ and $ \frac{ 138.21 \space g \space (K_2CO_3)}{1 \space mole \space (K_2CO_3)}$ 3. Use the conversion factors to calculate the mass of solute in $ 0.428$ L of that solution: $ 0.428 \space L \space solution \times \frac{ 0.450 \space moles \space K_2CO_3}{1 \space L \space solution} \times \frac{ 138.21 \space g \space K_2CO_3}{1 \space mole \space K_2CO_3} = 26.6 \space g \space K_2CO_3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.