Chemistry 9th Edition

Published by Cengage Learning
ISBN 10: 1133611095
ISBN 13: 978-1-13361-109-7

Chapter 14 - Acids and Bases - Exercises - Page 706: 117

Answer

a. $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}M$ $pH = 7.00$ b. $[H_3O^+] = 4.2 \times 10^{-10}M$ $[OH^-] = 2.4 \times 10^{-5}M$ $pH = 9.38$

Work Step by Step

a. 1. Analyze each ion that forms this salt: $K^+$: Conjugate pair of a strong base (KOH). So, it will not affect the pH of the solution. $Cl^-$: Conjugate pair of a strong acid (HCl). So, it will not affect the pH of the solution. 2. Therefore, the $[OH^-], [H_3O^+]$ and $pH$ will not be affected. So the values for that solution are equal to a pure water solution. $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7}M$ $pH = 7.00$ --------- b. 1. Analyze each ion that forms this salt: $K^+$: Conjugate pair of a strong base (KOH). So, it will not affect the pH of the solution. $C_2H_3O_2^-$: Conjugate pair of a weak acid. So, it will act as a weak base. - Calculate the $[OH^-]$ considering a $1.0M$ $C_2H_3O_2^-$ solution: - Since $C_2H_3O_2^-$ is the conjugate base of $HC_2H_3O_2$ , we can calculate its kb by using this equation: $K_a * K_b = K_w = 10^{-14}$ $ 1.8\times 10^{- 5} * K_b = 10^{-14}$ $K_b = \frac{10^{-14}}{ 1.8\times 10^{- 5}}$ $K_b = 5.6\times 10^{- 10}$ 3. Drawing the equilibrium (ICE) table, we get these concentrations at equilibrium: For the reaction: $C_2H_3O_2^-(aq) + H_2O(l) \lt -- \gt HC_2H_3O_2(aq) + OH^-(aq) $ Remember: Reactants get a '-x', and products get a '+x' The initial concentration of $HC_2H_3O_2$ is : 0 M, and the same for $[OH^-]$ is $\approx$ 0 M -$[OH^-] = [HC_2H_3O_2] = 0 + x = x$ -$[C_2H_3O_2^-] = [C_2H_3O_2^-]_{initial} - x $ For approximation, we are going to consider $[C_2H_3O_2^-]_{initial} = [C_2H_3O_2^-]$ 4. Now, use the Kb value and equation to find the 'x' value. $Kb = \frac{[OH^-][HC_2H_3O_2]}{ [C_2H_3O_2^-]}$ $Kb = 5.6 \times 10^{- 10}= \frac{x * x}{ 1}$ $Kb = 5.6 \times 10^{- 10}= \frac{x^2}{ 1}$ $x^2 = 5.6 \times 10^{-10} \times 1$ $x = \sqrt { 5.6 \times 10^{-10} \times 1} = 2.4 \times 10^{-5}$ Percent ionization: $\frac{ 2.4 \times 10^{- 5}}{ 1} \times 100\% = 0.0024\%$ %ionization < 5% : Right approximation. Therefore: $[OH^-] = [HC_2H_3O_2] = x = 2.4 \times 10^{- 5}M $ $[C_2H_3O_2^-] \approx 1M$ $[OH^-] * [H_3O^+] = Kw = 10^{-14}$ $ 2.4 \times 10^{- 5} * [H_3O^+] = 10^{-14}$ $[H_3O^+] = \frac{10^{-14}}{ 2.4 \times 10^{- 5}}$ $[H_3O^+] = 4.2 \times 10^{- 10}$ 5. Calculate the pH Value $pH = -log[H_3O^+]$ $pH = -log( 4.2 \times 10^{- 10})$ $pH = 9.38$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.