Answer
$E(t) = 3$
Work Step by Step
We can use the following fundamental identity:
$cos^2~x+sin^2~x = 1$
$L(t) = 3cos^2(6,000,000~t)$
$C(t) = 3sin^2(6,000,000~t)$
We can derive a simplified expression for $E(t)$:
$E(t) = L(t)+C(t)$
$E(t) = 3cos^2(6,000,000~t)+3sin^2(6,000,000~t)$
$E(t) = 3~[cos^2(6,000,000~t)+sin^2(6,000,000~t)]$
$E(t) = 3~(1)$
$E(t) = 3$