Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 5 - Trigonometric Identities - Section 5.2 Verifying Trigonometric Identities - 5.2 Exercises - Page 209: 74

Answer

$$\frac{\sin\theta}{1-\cos\theta}-\frac{\sin\theta\cos\theta}{1+\cos\theta}=\csc\theta(1+\cos^2\theta)$$ The expression is proved to be an identity by simplifying the left side.

Work Step by Step

$$\frac{\sin\theta}{1-\cos\theta}-\frac{\sin\theta\cos\theta}{1+\cos\theta}=\csc\theta(1+\cos^2\theta)$$ The left side is more complicated, which means we would try to simplify it first. $$A=\frac{\sin\theta}{1-\cos\theta}-\frac{\sin\theta\cos\theta}{1+\cos\theta}$$ $$A=\frac{\sin\theta(1+\cos\theta)-\sin\theta\cos\theta(1-\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$$ $$A=\frac{\sin\theta+\sin\theta\cos\theta-\sin\theta\cos\theta+\sin\theta\cos^2\theta}{1-\cos^2\theta}$$ $$A=\frac{\sin\theta+\sin\theta\cos^2\theta}{1-\cos^2\theta}$$ $$A=\frac{\sin\theta(1+\cos^2\theta)}{1-\cos^2\theta}$$ - From Pythagorean Identity, we have $$1-\cos^2\theta=\sin^2\theta$$. So, $$A=\frac{\sin\theta(1+\cos^2\theta)}{\sin^2\theta}$$ $$A=\frac{1+\cos^2\theta}{\sin\theta}$$ $$A=\frac{1}{\sin\theta}(1+\cos^2\theta)$$ - From Reciprocal Identity: $$\frac{1}{\sin\theta}=\csc\theta$$. So, $$A=\csc\theta(1+\cos^2\theta)$$ That makes the left and right sides equal with each other. The expression is thus an identity.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.