Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 4 - Review Exercises - Page 190: 29

Answer

Refer to the graph below.
1524233095

Work Step by Step

RECALL: The function $y=c+\cot{x}$ has: period = $\pi$ vertical shift= $|c|$, (upward when $c \gt0$, downward when $c\lt0$) consecutive vertical asymptotes: $x=0$ and $x=\pi$ The given function has $c=2$. Thus, it has: period = $\pi$ vertical shift = $|2|=2$ (which means that the values of the function vary from $-2$ to $2$ One period of this function is in the interval $[0, \pi]$. Divide this interval into four equal parts to obtain the key x-values $\frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$. To graph the given function, perform the following steps: (1) Create a table of values using the key x-values listed above. (Refer to the table below.) (2) Plot the points from the table of values and connect them using a sinusoidal curve. (Refer to the graph in the answer part above.)
Small 1524233095
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.