Trigonometry (11th Edition) Clone

Published by Pearson
ISBN 10: 978-0-13-421743-7
ISBN 13: 978-0-13421-743-7

Chapter 4 - Graphs of the Circular Functions - Section 4.1 Graphs of the Sine and Cosine Functions - 4.1 Exercises - Page 152: 61

Answer

In general, $\sin{(bx)} \ne b\cdot \sin{x}$.. This is because they have different periods and amplitudes. Refer to the image in the step by step part below for the graph.

Work Step by Step

RECALL: The function $a \cdot \sin{(bx)}$ has : amplitude = $|a|$ period = $\frac{2\pi}{b}$ Thus: The function $y=\sin{(2x)}$ has an amplitude of $|1|=1$ and a period of $\frac{2\pi}{2} = \pi$. The function $y=2\sin{x}$ has an amplitude of $|2|=2$ and a period of $\frac{2\pi}{1}=2\pi$. From the information above, it is bvious that the t wo functions are different from each other. Thus, it cannot be said that in general, $\sin{(bx)}=b \cdot \sin{x}$. Use a graphing utility to graph the two functions. (Refer to the attached image below for the graph, the green graph is $y=2\sin{x}$ while the red graph is $y=2\sin{x}$.) Use a graphing utility to graph the given functions. (Refer to the graph below.) Notice that the graphs are different.
Small 1523810915
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.