Answer
12,777 in an outlier.
Work Step by Step
In ascending order: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 67, 82, 83, 95, 100, 149, 159, 181, 188, 203, 244, 262, 281, 289, 300, 310, 316, 331, 347, 367, 375, 389, 403, 454, 476, 479, 521, 527, 547, 567, 579, 628, 635, 650, 671, 719, 736, 12777
There are 50 observations. $Q_2=median$ is the mean between the 25th and the 26th observations in ascending order:
$Q_2=\frac{281+289}{2}=285$
The botton half of the data: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 67, 82, 83, 95, 100, 149, 159, 181, 188, 203, 244, 262, 281. $Q_1$ is the median of these values. Since there are 25 observations, the median is the 13th observation in ascending order:
$Q_1=67$
The top half of the data: 289, 300, 310, 316, 331, 347, 367, 375, 389, 403, 454, 476, 479, 521, 527, 547, 567, 579, 628, 635, 650, 671, 719, 736, 12777. $Q_3$ is the median of these values. Since there are 25 observations, the median is the 13th observation in ascending order:
$Q_3=479$
$IQR=Q_3-Q_1=479-67=412$
$Lower~fence=Q_1-1.5\times IQR=-333$
$Upper~fence=Q_3+1.5\times IQR=1097$
Since $12,777\gt 1097$ it is an outlier. There are no other outliers.