Answer
$R=4.8~m/s$
The sample variance:
$s^2=2.025~m^2/s^2$
The sample standard deviation:
$s=1.423~m/s$
Work Step by Step
$R=largest~value-smallest~value=794.4-789.6=4.8$
According to the previous question:
$x̅=mean=792.51$
The sample variance:
$s^2=\frac{Σ(x_i-x̅)^2}{n-1}=\frac{(789.6-792.51)^2+(791.4-792.51)^2+(791.7-792.51)^2+(792.3-792.51)^2+(792.4-792.51)^2+(792.4-792.51)^2+(793.1-792.51)^2+(793.8-792.51)^2+(794.0-792.51)^2+(794.4-792.51)^2}{10-1}=2.025$
The sample standard deviation:
$s=\sqrt {2.025}=1.423$