Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 15 - Review - Review Exercises - Page 786: 3

Answer

$T\gt T_\frac{α}{2}$: null hypothesis is not rejected. There is not enough evidence to conclude that an individual’s height and arm span are different.

Work Step by Step

$H_0:M_D=0$ versus $M_D\ne0$ Let the "height" values to be the X and the "arm spam" values to be the Y. $D_i=X_i-Y_i~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Rank$ $D_1=X_1-Y_1=59.5-62=-2.5~~~~~~~~~~~~~~~-6$ $D_2=X_2-Y_2=69-65.5=3.5~~~~~~~~~~~~~~~~+9.5$ $D_3=X_3-Y_3=77-76=1~~~~~~~~~~~~~~~~~~~~~~~~+3$ $D_4=X_4-Y_4=59.5-63=-3.5~~~~~~~~~~~~~-9.5$ $D_5=X_5-Y_5=74.5-74=0.5~~~~~~~~~~~~~~~~+1.5$ $D_6=X_6-Y_6=63-66=-3~~~~~~~~~~~~~~~~~~~-7.5$ $D_7=X_7-Y_7=61.5-61=0.5~~~~~~~~~~~~~~~~+1.5$ $D_8=X_8-Y_8=67.5-69=-1.5~~~~~~~~~~~~~~~-4$ $D_9=X_9-Y_9=73-70=3~~~~~~~~~~~~~~~~~~~~~~~+7.5$ $D_{10}=X_{10}-Y_{10}=69-71=-2~~~~~~~~~~~~~~~~-5$ $n=10$ Two-tailed test. $T_+=9.5+3+1.5+1.5+7.5=23$ $|T_-|=|-6-9.5-7.5-4-5|=32$ $T_+\lt |T_-|$. So: Test statistic: $T=T_+=23$ Critical value: $T_\frac{α}{2}=8$ (According to table XII, for $n=10$ and $\frac{α}{2}=0.025$) Since $T\gt T_\frac{α}{2}$, we do not reject the null hypothesis.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.