Statistics: Informed Decisions Using Data (4th Edition)

Published by Pearson
ISBN 10: 0321757270
ISBN 13: 978-0-32175-727-2

Chapter 13 - Section 13.1 - Assess Your Understanding - Applying the Concepts - Page 636: 27e

Answer

$F_0\gt F_{α,n_1-1,n_2-1}$: null hypothesis is rejected. There is enough evidence to conclude that the mean CBCL scores are different for the three treatment groups.

Work Step by Step

$x ̅=\frac{11.7+9.0+12.4}{3}=11.0333$ $SST=n_1(x ̅_1-x ̅)^2+n_2(x ̅_2-x ̅)^2+n_3(x ̅_3-x ̅)^2=70(11.7-11.0333)^2+70(9.0-11.0333)^2+70(12.4-11.0333)^2=451.2636$ $MST=\frac{SSE}{k-1}=\frac{451.2636}{3-1}=225.63$ $SSE=(n_1-1)s_1^2+(n_2-1)s_2^2+(n_3-1)s_3^2=(70-1)21.6+(70-1)13.0+(70-1)8.4=2967$ $MSE=\frac{SSE}{n-k}=\frac{2967}{210-3}=14.33$ $F_0=\frac{MST}{MSE}=\frac{225.63}{14.33}=15.745$ Two-tailed test: $F_{α,n_1-1,n_2-1}=$F_{0.05,2,207}$=3.04$ (According to table VIII, for $d.f._1=2$, $d.f._2=207$ and area in the right tail = 0.05) Since $F_0\gt F_{α,n_1-1,n_2-1}$, we reject the null hypothesis.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.