#### Answer

$\overline{d}=2.4$, $s_d=1.1619$

#### Work Step by Step

The differences: 16-15=1, 18-16=2, 27-24=3, 17-15=2, 33-29=4. $\overline{d}$ is the averages of the differences, hence: $\overline{d}=\frac{1+2+3+2+4}{5}=2.4.$
$s_d$ is the standard deviation of the differences, hence$s_d=\sqrt{\frac{\sum (x-\mu)^2}{n-1}}=\sqrt{\frac{(1-2.4)^2+(2-2.4)^2+(3-2.4)^2+(2-2.4)^2+(4-2.4)^2}{4}}=1.1619.$