#### Answer

$n_1=201,229$
$n_2=200,745$
$\hat{p_1}=0.999836$
$\hat{p_2}=0.999427$
$\overline{p}=0.999632$
$\overline{q}=0.000368$

#### Work Step by Step

We know that $n$ is the sample size, hence we find that $n_1=201229$ and $n_2=200745$.
We know that $\hat{p}$ is equal to the number of successes divided by the sample size. Thus:
$\hat{p_1}=\frac{201,229−33}{201,229}=0.999836$
$\hat{p_2}=\frac{200,745−115}{200,745}=0.999427$
We know that $\overline{p}$ is equal to $\frac{x_1+x_2}{n_1+n_2}$. Thus:
$\overline{p}=\frac{401,974−115−33}{401,974}=0.999632 $
We know that:
$\overline{q}=1−\overline{p}=0.000368$