#### Answer

0.1075, evidence is not too strong.

#### Work Step by Step

p=0.2
$q=1-p=1-0.2=0.8$
$n⋅p=50⋅0.2=10≥5.$
$n⋅q=50⋅0.8=40≥5.$
Hence, the requirements are satisfied.
mean: $\mu=n\cdotp=50\cdot0.2=10.$
standard deviation: $\sigma=\sqrt{n\cdot p\cdot q}=\sqrt{50\cdot0.2\cdot0.8}=2.83.$
6.5 is the first value more than 6, hence:
$z=\frac{value-mean}{standard \ deviation}=\frac{6.5-10}{2.83}=-1.24.$
By using the table, the probability belonging to z=-1.24: 0.1075, hence the probability: 0.1075. This probability is not too close to 0, therefore the evidence is not very strong.