#### Answer

a)$\frac{1}{575757}$
b)$\frac{1}{19}$
c)$\frac{1}{10,939,383}$

#### Work Step by Step

a) Because the order is not important, we can use the combination rule to determine the number of possibilities: $\frac{39!}{(39-5)!5!}=575757.$
We also know that $probability=\frac{number \ of \ good \ outcomes}{number\ of\ all\ outcomes}$, therefore $P=\frac{1}{575757}$.
b) We know that $probability=\frac{number \ of \ good \ outcomes}{number\ of\ all\ outcomes}$, therefore $P=\frac{1}{19}$.
c) Then for the probability of winning the jackpot we can use the multiplication rule: P=$\frac{1}{575757}\cdot \frac{1}{19}=\frac{1}{10,939,383}$