An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.6 The Variance - Questions - Page 157: 8

Answer

See explanation

Work Step by Step

(a) $\begin{align*} \int_1^\infty f_Y(y)\ dy &= \int_1^\infty \frac{2}{y^3}\ dy \\ &= 2\int_1^\infty y^{-3}\ dy \\ &= 2\left( \frac{y^{-2}}{-2}\ \right\vert_1^\infty \\ &= \left( -\frac{1}{y^2}\ \right\vert_1^\infty \\ &= -\frac{1}{\infty^2} - \left(-\frac{1}{1^2}\right) \\ &= 0 + 1\\ \color{blue}{\int_1^\infty f_Y(y)\ dy}\ &\color{blue}{= 1.} \end{align*}$ (b) $\begin{align*} E(Y) &= \int_1^\infty y\cdot f_Y(y)\ dy \\ &= \int_1^\infty y\cdot \frac{2}{y^3}\ dy \\ &= 2\int_1^\infty y^{-2}\ dy \\ &= 2\left( \frac{y^{-1}}{-1}\ \right\vert_1^\infty \\ &= 2\left( -\frac{1}{y}\ \right\vert_1^\infty \\ &= 2\left(-\frac{1}{\infty} - \left(-\frac{1}{1}\right)\right) \\ &= 2(0 + 1) \\ \color{blue}{E(Y)}\ &\color{blue}{= 2.} \end{align*}$ (c) $\begin{align*} E(Y^2) &= \int_1^\infty y^2\cdot f_Y(y)\ dy \\ &= \int_1^\infty y^2\cdot \frac{2}{y^3}\ dy \\ &= 2\int_1^\infty y^{-1}\ dy \\ &= 2\left( \ln y\ \right\vert_1^\infty \\ &= 2\left(\ln \infty - \ln 1\right) \\ &= 2(\infty - 0) \\ \color{blue}{E(Y^2)}\ &\color{blue}{= \infty.} \end{align*}$ Thus, $\begin{align*} \text{Var}(Y) &= E(Y^2) - E(Y)^2 \\ &= \infty - 2^2 \\ &= \infty - 4 \\ \color{blue}{\text{Var}(Y)}\ &\color{blue}{= \infty,} \end{align*}$ so that $\text{Var}(Y)$ is not finite.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.