An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.5 Expected Values - Questions - Page 153: 35

Answer

$\color{blue}{\dfrac{49}{3} \approx 16.33}$ square units

Work Step by Step

For each fixed $Y=y \in[6,10]$, the length of each leg of the isosceles right triangle is $a = y/\sqrt{2}$. Consequently, the area of the triangle is ${\large\frac{1}{2}}a^2 = {\large\frac{1}{2}}(y/\sqrt{2})^2 = \dfrac{1}{4}y^2.$ Now, \begin{align*} E\left(\frac{1}{4}Y^2\right) &= \frac{1}{4}E(Y^2) & [\ \text{Corollary 3.5.1, p. 148}\ ] \\ &= \frac{1}{4}\left( \int_{\Omega_Y} y^2\cdot f_Y(y)\ dy \right) \\ &= \frac{1}{4}\left( \int_{y\in [6,10]} y^2\cdot \frac{1}{4}\ dy \right) & Y\sim \text{Uniform}[6,10] \implies \\ & & f_Y(y) = \frac{1}{10-6} = \frac{1}{4},\ y\in[6,10] \\ &= \frac{1}{4}\left( \int_6^{10} y^2\cdot \frac{1}{4}\ dy \right) \\ &= \frac{1}{4}\cdot \left( \frac{1}{4}\cdot \frac{y^3}{3}\ \right\vert_6^{10} \\ &= \frac{1}{(4)(4)(3)} \biggl( y^3\ \biggr\vert_6^{10} \\ &= \frac{1}{(4)(4)(3)} \left( 10^3-6^3 \right) \\ &= \frac{1}{(4)(4)(3)}(1,\!000-216) \\ &= \frac{1}{(4)(4)(3)}(784) \\ &= \frac{1}{(4)(4)(3)}(4)(4)(49) \\ \color{blue}{E\left(\frac{1}{4}Y\right)}\ &\color{blue}{= \frac{49}{3} \;\approx\; 16.33 } \end{align*} Thus, the expected value of such a triangle is $\color{blue}{\dfrac{49}{3} \approx 16.33}$ square units.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.