An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.4 Continuous Random Variables - Questions - Page 137: 17

Answer

See proof

Work Step by Step

From the definitions of a pdf and cdf, we have $\begin{align*} P(Y\lt -a) &= P(Y\le -a) \;=\; \int_{-\infty}^{-a} f_Y(y)\ dy \;=\; F_Y(-a) & \text{(Eq. 1)} \\ P(-a\le Y\le a) &= \int_{-a}^a f_Y(y)\ dy & \text{(Eq. 2)} \\ \int_a^\infty f_Y(y)\ dy &= P(Y \gt a) \;=\; 1-P(Y\le a) = 1 -F_Y(a) & \text{(Eq. 3)} \end{align*}$ Using the change of variable $u=-y$ in Eq. 1, so that $-du = dy$ and $y=-\infty \implies u=\infty$ and $y=-a \implies u=a$, we get \begin{align*} P(Y\lt a) &= \int_{\infty}^{a} f_Y(-u)\ (-du) \\ &= \int_a^\infty f_Y(-u)\ du \\ &= \int_a^\infty f_Y(u)\ du & [\text{since}\ f_Y(-y) = f_Y(y)\; \text{due to symmetry}] \\ P(Y \lt a) &= P(Y \gt a) \;=\; 1 - F_Y(a) & [\text{see (Eq. 3)}] \quad \text{(Eq. 4)} \end{align*} Thus, since $\begin{align*} P(-\infty \lt Y \lt \infty ) &= 1, \end{align*}$ so that $\begin{align*} P(-\infty \lt Y \lt -a ) + P(-a \le Y \le a) + P(a\lt Y\lt \infty ) &= 1, \\ \underbrace{P(Y \lt -a)}_{P(Y\gt a)\ \text{by Eq. 4)}} + P(-a \le Y \le a) + P(Y \gt a) &=1 \\ P(Y\gt a) + P(-a \le Y \le a) + P(Y \gt a) &=1 \\ P(-a \le Y\le a) + 2P(Y\gt a) &= 1. \qquad \text{(Eq. 5)} \end{align*}$ Now, by Eq. 3, $P(Y\gt a) = 1-F_Y(a)$. Thus, continuing from Eq. 5 $\begin{align*} P(-a \le Y\le a) + 2\overbrace{(1-F_Y(a))}^{P(Y\gt a)\ \text{by Eq. 3}} &= 1 \\ P(-a\le Y\le a) &= 1-2(1-F_Y(a)) \\ &= 1-2+2F_Y(a) \\ P(-a\le Y\le a) &= 2F_Y(a) -1 \\ &\stackrel{\Large \text{Q.E.D.}}{} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.