An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.12 Moment-Generating Functions - Questions - Page 215: 20

Answer

$\color{blue}{\frac{53}{512} \;\approx\; 0.104}$

Work Step by Step

Since $M_X(t) = (\frac{1}{4}+\frac{3}{4}e^t)^5$, then $X\sim\text{Binomial}(n=5,p=\frac{3}{4})$. It follows that $\qquad \displaystyle f_X(x) = {5\choose x}\left(\dfrac{3}{4}\right)^x\left(\dfrac{1}{4}\right)^{5-x},\ x=0,1,2,3,\ldots.$ Thus, $\begin{align*} P(X\le 2) &= P(X=0) + P(X=1) + P(X=2) \\ &= f_X(0) + f_X(1) +f_X(2) \\ &= {5\choose 0}\left(\dfrac{3}{4}\right)^0\left(\dfrac{1}{4}\right)^5 + {5\choose 1}\left(\dfrac{3}{4}\right)^1\left(\dfrac{1}{4}\right)^4 + {5\choose 2}\left(\dfrac{3}{4}\right)^2\left(\dfrac{1}{4}\right)^3 \\ &= \frac{1}{4^5} + \frac{5(3)}{4^5} + (10)\frac{9}{4^5} \\ &= \frac{106}{4^5} \\ \color{blue}{P(X\le 2)}\ &\color{blue}{= \frac{53}{512} \;\approx\; 0.104} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.