An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.11 Conditional Densities - Questions - Page 206: 21

Answer

See explanation

Work Step by Step

We will start on the right-hand side and show that it is equal to the left-hand side. $\begin{align*} E_X[E(Y\vert x)] &= \int_{-\infty}^\infty E(Y\vert x)\cdot f_X(x)\ dx \qquad \text{[ since}\ E_X[g(x)] = \int_{\mathbb{R}} g(x)f_X(x)\ dx\ ]\\ &= \int_{-\infty}^\infty \overbrace{\left( \int_{-\infty}^\infty y\cdot f_{Y\vert X=x}(y\vert x)\ dy\right)}^{E(Y\vert X=x)}\cdot f_X(x)\ dx \\ &= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty y\cdot \overbrace{\frac{f_{X,Y}(x,y)}{f_X(x)}}^{f_{Y\vert X=x}(y\vert x)}\ dy\right)\cdot f_X(x)\ dx \\ &= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty y\cdot\frac{f_{X,Y}(x,y)}{f_X(x)}\cdot f_X(x)\ dy\right)\ dx \\ & \qquad\qquad\qquad\qquad\qquad \text{[ since}\ f_X(x)\ \text{isn't a function of}\ y\ ]\\ &= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty y\cdot f_{X,Y}(x,y)\ dy\right)\ dx \\ &= \int_{-\infty}^\infty \left( \int_{-\infty}^\infty y\cdot f_{X,Y}(x,y)\ dx\right)\ dy \qquad \text{[ switch order of integration ]}\\ &= \int_{-\infty}^\infty y\cdot \underbrace{\left( \int_{-\infty}^\infty f_{X,Y}(x,y)\ dx\right)}_{f_Y(y)}\ dy \\ &= \int_{-\infty}^\infty y\cdot f_Y(y)\ dy \\ E_X[E(Y\vert x)] &= E[Y] \\ &\text{Q.E.D} \end{align*}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.