An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 3 Random Variables - 3.11 Conditional Densities - Questions - Page 205: 11

Answer

See explanation.

Work Step by Step

First, note that the cdf of $X$ is given by $\begin{align*} t\ge 0, F_X(t) &= P(X\le t) \\ &= \int_{-\infty}^t f_X(x)\ dx \\ &= \int_0^t (1/\lambda)e^{-x/\lambda}\ dx \qquad \biggl[\ \text{since}\ f_X(x)=0, x\lt 0\ \biggr]\\ &= -e^{-x/\lambda}\biggr\vert_0^t \\ &= -e^{-t/\lambda} - (- e^{-0}) \\ F_X(t) &= 1 - e^{-t/\lambda}, t\ge 0. \end{align*}$ Next, we tackle the equation involving the two probabilities of interest starting with the probability on the left-hand side. $\begin{align*} s,t \ge 0, P(X\gt s+t\vert X\gt t) &= \frac{P(X\gt s+t, X\gt s)}{P(X\gt t)} \qquad \biggl[\ \text{since}\ P( A\vert B) = \frac{P(A,B)}{P(B)}\ \biggr] \\ &= \frac{P(X\gt s+t)}{P(X\gt t)} \\ & \qquad \biggl[\ \text{since}\ s,t\ge 0\implies s+t \ge s \implies\{X\gt s\}\cap\{X\gt s+t\} = \{X\gt s+t\}\ \biggr] \\ &= \frac{1-F_X(s+t)}{1-F_X(t)} \\ &= \frac{1-(1-e^{(s+t)/\lambda})}{1-(1-e^{-t/\lambda})} \\ &= \frac{e^{-s/\lambda-t/\lambda}}{e^{-t/\lambda}} \\ &= \frac{e^{-s/\lambda}e^{-t/\lambda}}{e^{-t/\lambda}} \\ &= e^{-s/\lambda} \\ &= 1-(1-e^{-s/\lambda}) \\ &= 1 - F_X(s) \\ s,t \ge 0, P(X\gt s+t\vert X\gt t) &= P(X\gt s). \end{align*}$ Thus, $X$ indeed has the $\it{memoryless\ property}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.