Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 7 - Section 7.1 - Trigonometric Identities - 7.1 Exercises - Page 545: 118

Answer

a) $\sin (\dfrac{\pi}{2}-u)=\cos u$ b) $\cos (\dfrac{\pi}{2}-u)=\sin u$ c) $\tan (\dfrac{\pi}{2}-u) =\cot u$ d) $\sec (\dfrac{\pi}{2}-u) =cosec u$ e) $cosec (\dfrac{\pi}{2}-u) =\sec u$ f) $\cot (\dfrac{\pi}{2}-u) =\tan u$

Work Step by Step

Here, we have $u+v+\dfrac{\pi}{2}=180^{\circ}$ or, $u+v+\dfrac{\pi}{2}=\pi$ This gives: $v=\dfrac{\pi}{2}-u$ Thus, we get a) $\sin (\dfrac{\pi}{2}-u)=\sin (\dfrac{\pi}{2}) \cos u- \cos (\dfrac{\pi}{2}) \sin u=\cos u$ b) $\cos (\dfrac{\pi}{2}-u)=\cos (\dfrac{\pi}{2}) \cos u+ \sin (\dfrac{\pi}{2}) \sin u=\sin u$ c) $\tan (\dfrac{\pi}{2}-u) =\dfrac{\sin (\dfrac{\pi}{2}-u)}{\cos (\dfrac{\pi}{2}-u)}$ or, $\dfrac{\cos u}{\sin u}=\cot u$ Thus, $\tan (\dfrac{\pi}{2}-u) =\cot u$ d) $\sec (\dfrac{\pi}{2}-u) =\dfrac{1}{\cos (\dfrac{\pi}{2}-u)}$ or, $\dfrac{1}{\sin u}=cosec u$ Thus, $\sec (\dfrac{\pi}{2}-u) =cosec u$ e) $cosec (\dfrac{\pi}{2}-u) =\dfrac{1}{\sin (\dfrac{\pi}{2}-u)}$ or, $\dfrac{1}{\cos u}=\sec u$ Thus, $cosec (\dfrac{\pi}{2}-u) =\sec u$ f) $\cot (\dfrac{\pi}{2}-u) =\dfrac{\cos (\dfrac{\pi}{2}-u)}{\sin (\dfrac{\pi}{2}-u)}$ or, $\dfrac{\sin u}{\cos u}=\tan u$ Thus, $\cot (\dfrac{\pi}{2}-u) =\tan u$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.