Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 6 - Review - Concept Check - Page 526: 4

Answer

$(a)$ See the image below. $(b)$ $sin\theta=\frac{opposite}{hypotenuse}$ $cos\theta=\frac{adjacent}{hypotenuse}$ $tan\theta=\frac{opposite}{adjacent}$ $csc\theta=\frac{hypotenuse}{opposite}$ $sec\theta=\frac{hypotenuse}{adjacent}$ $cot\theta=\frac{adjacent}{opposite}$ $(c)$ $sin\theta=\frac{3}{5}$ $cos\theta=\frac{4}{5}$ $tan\theta=\frac{3}{4}$ $csc\theta=\frac{5}{3}$ $sec\theta=\frac{5}{4}$ $cot\theta=\frac{4}{3}$ $(d)$ $sin30°=\frac{1}{2}$ $sin45°=\frac{\sqrt2}{2}$ $sin60°=\frac{\sqrt3}{2}$ $cos30°=\frac{\sqrt3}{2}$ $cos45°=\frac{\sqrt2}{2}$ $cos60°=\frac{1}{2}$ $tan30°=\frac{\sqrt3}{3}$ $tan45°=1$ $tan60°=\sqrt3$

Work Step by Step

$(a)$ See the image below. $(b)$ $sin\theta=\frac{opposite}{hypotenuse}$ $cos\theta=\frac{adjacent}{hypotenuse}$ $tan\theta=\frac{opposite}{adjacent}$ $csc\theta=\frac{hypotenuse}{opposite}$ $sec\theta=\frac{hypotenuse}{adjacent}$ $cot\theta=\frac{adjacent}{opposite}$ $(c)$ Using the general forms in $(a)$ We can write the following: $sin\theta=\frac{3}{5}$ $cos\theta=\frac{4}{5}$ $tan\theta=\frac{3}{4}$ $csc\theta=\frac{5}{3}$ $sec\theta=\frac{5}{4}$ $cot\theta=\frac{4}{3}$ $(d)$ In general, we have these special values of sine, cosine and tangent. $sin30°=\frac{1}{2}$ $sin45°=\frac{\sqrt2}{2}$ $sin60°=\frac{\sqrt3}{2}$ $cos30°=\frac{\sqrt3}{2}$ $cos45°=\frac{\sqrt2}{2}$ $cos60°=\frac{1}{2}$ $tan30°=\frac{\sqrt3}{3}$ $tan45°=1$ $tan60°=\sqrt3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.