Answer
(a) x zeros$-1.24, 0, 2, 3.24$,
local maximum $(1,5)$,
local minima $(-0.73,-4),(2.73,-4)$.
(b) $(-\infty,-1.24]\cup[0,2]\cup[3.24,\infty)$
Work Step by Step
(a) see graph, zeros$-1.24, 0, 2, 3.24$,
local maximum $(1,5)$,
local minima $(-0.73,-4),(2.73,-4)$.
(b)The function can be factored based on the results from (a)
$x(x+1.24)(x-2)(x-3.24)\geq0$ test signs in intervals
$(-\infty,-1.24),(-1.24,0),(0,2),(2,3.24),(3.24,\infty)$ and the results are
$+,-,+,-,+$, so the solutions for the inequality after testing end points are:
$(-\infty,-1.24]\cup[0,2]\cup[3.24,\infty)$