Answer
a.
$g(-4)=3,$
$g(-2)=2,$
$g(0)=-2$
$g(2)=1$
$g(4)=0$
b. Domain: $[-3,4]$
Range: $[-2,3]$
c. $x = 4$
d. $[-1,2.8]$
e. $1$
Work Step by Step
a.
$g(-4)=3,$
$g(-2)=2,$
$g(0)=-2$
$g(2)=1$ ... [solid dot on $(2,1)$]
$g(4)=0$
b.
Domain = $[-3,4]$ ... all x-values for which g is defined.
Range = $[-2,3]$ ... all y-values that g(x) can attain.
c.
$g(x) = 3$ when $x = -4$;
d.
The graph is on or below the x-axis on the interval ( approximate borders):
$[-1,2.8]$
e.
Net change between $x=-1$ and $x=2$:
$g(2)-g(-1)=1-0=1$