Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 10 - Review - Test - Page 773: 9

Answer

(a) incompatible dimensions. (b) incompatible dimensions. (c) $\begin{bmatrix} 6&10\\3&-2\\-3&9 \end{bmatrix}$ (d) $\begin{bmatrix} 36&58\\0&-3\\18&28 \end{bmatrix}$ (e) $\begin{bmatrix} 2&-\frac{3}{2}\\-1&1 \end{bmatrix}$ (f) not a square matrix. (g) not a square matrix. (h) $-3$

Work Step by Step

The following matrices are given: $\begin{array} \\A= \\ \end{array} \begin{bmatrix} 2&3\\2&4 \end{bmatrix}, \begin{array} \\B= \\ \end{array} \begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix}, \begin{array} \\C= \\ \end{array} \begin{bmatrix} 1&0&4\\-1&1&2\\0&1&3 \end{bmatrix}$ (a) $\begin{array} \\A+B= \\ \end{array} \begin{bmatrix} 2&3\\2&4 \end{bmatrix} \begin{array} \\+ \\ \end{array} \begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix}$ This can not be performed as the two matrices are of incompatible dimensions. (b) $\begin{array} \\AB= \\ \end{array} \begin{bmatrix} 2&3\\2&4 \end{bmatrix} \begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix}$ The product of $2\times2$ and $3\times2$ can not be performed due to incompatible dimensions. (c) $\begin{array} \\BA= \\ \end{array} \begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix} \begin{bmatrix} 2&3\\2&4 \end{bmatrix}=\begin{bmatrix} 12&22\\0&1\\6&9 \end{bmatrix}$ $\begin{array} \\BA-3B= \\ \end{array} =\begin{bmatrix} 12&22\\0&1\\6&9 \end{bmatrix}-3\begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix} =\begin{bmatrix} 6&10\\3&-2\\-3&9 \end{bmatrix}$ (d) $\begin{array} \\CB= \\ \end{array} \begin{bmatrix} 1&0&4\\-1&1&2\\0&1&3 \end{bmatrix}\begin{bmatrix} 2&4\\-1&1\\3&0 \end{bmatrix}=\begin{bmatrix} 14&4\\3&-3\\8&1 \end{bmatrix}$ $\begin{array} \\CBA= \\ \end{array} \begin{bmatrix} 14&4\\3&-3\\8&1 \end{bmatrix}\begin{bmatrix} 2&3\\2&4 \end{bmatrix} =\begin{bmatrix} 36&58\\0&-3\\18&28 \end{bmatrix}$ (e) Use the inverse formula for a 2x2 matrix: $\begin{array} \\A^{-1}=\frac{1}{8-6} \\ \end{array} \begin{bmatrix} 4&-3\\-2&2 \end{bmatrix} =\begin{bmatrix} 2&-\frac{3}{2}\\-1&1 \end{bmatrix}$ (f) $B^{-1}$ can not be derived as it is not a square matrix. (g) $det(B)$ can not be evaluated as it is not a square matrix. (h) Expand with row-1: $\begin{array} \\det(C)= \\ \end{array} \begin{vmatrix} 1&0&4\\-1&1&2\\0&1&3 \end{vmatrix}=1(3-2)+4(-1-0)=-3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.