Answer
$f(x)=\frac{1}{3}(x+3)(x-2)(x+1)^2$
Work Step by Step
1. There are three turning points, thus it is possible that the order is 4.
2. Identify zeros $x=-3,2$ (multiplicity 1) and $x=-1$ (multiplicity 2).
3. Write a possible form $f(x)=a(x+3)(x-2)(x+1)^2$
4. Use point $(0,-2)$ to get $a(3)(-2)(1)=-2$ and $a=\frac{1}{3}$
5. Thus $f(x)=\frac{1}{3}(x+3)(x-2)(x+1)^2$