Precalculus (6th Edition)

Published by Pearson
ISBN 10: 013421742X
ISBN 13: 978-0-13421-742-0

Chapter 8 - Application of Trigonometry - 8.6 De Moivre's Theorem; Powers and Roots of Complex Numbers - 8.6 Exercises - Page 809: 37


$[{cis 0^{\circ},cis 120^{\circ},cis 240^{\circ}}]$

Work Step by Step

Given: $x^{3}-1=0$ or $x^{3}=1$ $1$ can be written in trigonometric form as: $1=1+0.i=1(\cos 0^{\circ}+\sin 0^{\circ})$ Absolute value of third root is given as $\sqrt[3] 1=1$ Now, the arguments can be given as: $k=0,1,2$ Roots: $1(\cos 0^{\circ}+\sin 0^{\circ})$,$1(\cos 120^{\circ}+\sin 120^{\circ})$,$1(\cos 240^{\circ}+\sin 240^{\circ})$ Solution set of the equation can be written as: $[{cis 0^{\circ},cis 120^{\circ},cis 240^{\circ}}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.