Answer
(a) $18,563.28$ dollars.
(b) $18,603.03$ dollars.
(c) $18,612.02$ dollars.
(d) $18,616.39$ dollars.
Work Step by Step
Given $P=15,000, r=0.027,t=8$, we have:
(a) annually $n=1$, $A=P(1+\frac{r}{n})^{nt}=15000(1+\frac{0.027}{1})^{8}\approx18,563.28$ dollars.
(b) quarterly $n=4$, $A=P(1+\frac{r}{n})^{nt}=15000(1+\frac{0.027}{4})^{4(8)}\approx18,603.03$ dollars.
(c) monthly $n=12$, $A=P(1+\frac{r}{n})^{nt}=15000(1+\frac{0.027}{12})^{12(8)}\approx18,612.02$ dollars.
(d) daily $n=365$, $A=P(1+\frac{r}{n})^{nt}=15000(1+\frac{0.027}{365})^{365(8)}\approx18,616.39$ dollars.