#### Answer

domain: $(-\infty, +\infty)$
range: $(-\infty, +\infty)$
Refer to the graph below.

#### Work Step by Step

Find the x-intercept by setting $f(x)$ or $y$ to zero, then solve for $x$.
$f(x) = \frac{2}{3}x+2
\\0=\frac{2}{3}x+2
\\0-2=\frac{2}{3}x+2-2
\\-2=\frac{2}{3}x
\\-2(\frac{3}{2})=2(\frac{1}{2}x)(\frac{3}{2})
\\-3=x$
The x-intercept is $(-3, 0)$.
Find the y-intercept by setting $x=0$ then solving for $y$.
$f(x)=\frac{2}{3}x+2
\\f(x) = \frac{2}{3}(0)+2
\\f(x)=0+2
\\f(x)=2$
The y-intercept is $(0, 2)$.
Plot the intercepts and connect them using a line. The point $(3, 4)$ can be used as a check point.
(Refer to the graph in the answer part above.)
The graph covers all x-values and all y-values.
Thus, the given function has:
domain: $(-\infty, +\infty)$
range: $(-\infty, +\infty)$