Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 7 - Analytic Trigonometry - Chapter Review - Cumulative Review - Page 508: 2

Answer

$y=-x+3$ $d=6\sqrt2.$ $M=(1,2)$.

Work Step by Step

We know that by the Slope Formula: if $P_1(x_1,y_1)$ and $P_2(x_2,y_2)$ are on a line, then the slope is: $m=\frac{y_2-y_1}{x_2-x_1}$. Hence here: $m=\frac{5-(-1)}{-2-4}=-1.$ We know that if the slope of a line is $m$ and it contains $P_1(x_1,y_1)$, then its equation is: $y-y_1=m(x-x_1).$ Hence here: $y-(-1)=-1(x-4)\\y+1=-x+4\\y=-x+3$ The distance formula from $P_1(x_1,y_1)$ to $P_2(x_2,y_2)$ is $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$. The midpoint $M$ of the line segment from $P_1(x_1,y_1)$ to $P_2(x_2,y_2)$ is: $(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$. Hence: $d=\sqrt{(-2-4)^2+(5-(-1))^2}=\sqrt{36+36}=\sqrt{72}=6\sqrt2.$ $M=(\frac{4+(-2),\frac{(-1+5)}{2}}{2})=(1,2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.