Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Chapter 5 - Exponential and Logarithmic Functions - 5.4 Logarithmic Functions - 5.4 Assess Your Understanding - Page 294: 5


$(1,0), (a,1), \left(\frac{1}{a}, -1\right).$

Work Step by Step

The definition of the logarithmic function says that $y=\log_a{x}$ if and only if $a^y=x$. Also, $a\gt0,a\ne1$ and $x\gt0$. We know that $\log_a {1}=0$, $\log_a {a}=1$, $\log_a {\left(\frac{1}{a}\right)}=-1$, hence the points (by using the definition, e.g. in $\log_a {1}=0$: $x=1, y=0$) : $(1,0), (a,1), \left(\frac{1}{a}, -1\right).$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.